Can #AI make me look (more) presentable? The jury is out I think.
This is called style transfer, where the style/technique from a kind of painting (could be a photos too) is applied to an image, to create a new image. I took this using the built-in camera on my machine sitting at my desk and then applying the different kind of ‘styles’ on it. Each of these styles are is a separate #deeplearning model that has learned how to apply the relevant style to a source image.
Specifically, this uses a Neural Network (#DeepLearning) model called VGG19, which is a 19 layer model running on TensorFlow. Of course you can export this to a ONNX model, that then can be used in most other run-times and libraries.
This is inspired from Cornell universities paper – Perceptual Losses for Real-Time Style Transfer and Super-Resolution. Below is a snapshot of the VGG code that.
def net(data_path, input_image): layers = ( 'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1', 'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2', 'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3', 'relu3_3', 'conv3_4', 'relu3_4', 'pool3', 'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3', 'relu4_3', 'conv4_4', 'relu4_4', 'pool4', 'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3', 'relu5_3', 'conv5_4', 'relu5_4' ) data = scipy.io.loadmat(data_path) mean = data['normalization'][0][0][0] mean_pixel = np.mean(mean, axis=(0, 1)) weights = data['layers'][0] net = {} current = input_image for i, name in enumerate(layers): kind = name[:4] if kind == 'conv': kernels, bias = weights[i][0][0][0][0] # matconvnet: weights are [width, height, in_channels, out_channels] # tensorflow: weights are [height, width, in_channels, out_channels] kernels = np.transpose(kernels, (1, 0, 2, 3)) bias = bias.reshape(-1) current = _conv_layer(current, kernels, bias) elif kind == 'relu': current = tf.nn.relu(current) elif kind == 'pool': current = _pool_layer(current) net[name] = current assert len(net) == len(layers) return net def _conv_layer(input, weights, bias): conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1, 1, 1, 1), padding='SAME') return tf.nn.bias_add(conv, bias) def _pool_layer(input): return tf.nn.max_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1), padding='SAME')
If you have interest to play with this, you can download the code. Personally, I like Mosaic style the best.